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Abstract

Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for sta-
tic and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully
non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton
membrane tube under different pressures, and for a rectangular membrane under different tension loads at four corners.
Finite-element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is
low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numer-
ical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200
scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.
� 2004 Published by Elsevier Ltd.
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1. Introduction

Recently there has been a renewed interest in deployable/inflatable structures for terrestrial investiga-
tions. Moreover, because the cargo space of a launch vehicle is always limited, large space structures must
be designed to be stowed during launch and deployed once on orbit. Hence, instead of using previous elec-
tro-mechanical deployment systems, recent efforts of NASA concentrate on the use of inflatable structures
for space applications (Salama et al., 2000; Jenkins, 2001). For example, NASA conducted the Inflatable
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Antenna Experiment (IAE) in 1996 (Dornhiem and Anselmo, 1996). The membrane antenna having an in-
flated diameter of 50 in. with three 93 in. long struts was transported by the space shuttle Endeavour in a
7ft. · 3ft. · 1.5 ft. container. Also inflatable membrane structures have been used in parabolic antennas,
radiators, solar concentrators, sun shields, habitats, radio-frequency structures, optical communication
systems, radars, lightweight radio-meters, telescopes, etc. Moreover, large balloons are also membrane
structures that have been used for many scientific missions. Advantages of membrane structures include
small-stowed volume, lightweight, low cost, and good thermal and damping properties (Palisoc, 1994).
However, there are difficulties in the design of large scientific membranes (Damle et al., 1997).

Over the last few decades, studying the dynamic behaviors of inflatable membrane structures has proven
to be a challenging job. Many researchers have studied the dynamic characterization of membranes using
numerical methods and, when possible, experimental approaches. Numerical methods such as finite differ-
ence and boundary elements were used by some researchers to compute vibration modes and frequencies of
inflatable dams (Hsieh and Plaut, 1990). The membrane material used in the numerical analysis was as-
sumed inextensible and its weight was neglected in the determination of the equilibrium shape. They found
that the membrane�s mass density is of little influence on the computed natural frequencies. Other research-
ers used finite elements and boundary elements to model and compute natural frequencies and mode shapes
of a single-anchor inflatable dam (Mysore and Liapis, 1998). They found that the rigid foundation that
anchors the dam increases the frequencies whereas the presence of impounded water tends to reduce the
frequencies. They noted that the natural frequencies are dependent on the internal pressure as well as
the hydrodynamic pressure of the impounding water. The pressure in an inflatable structure can also play
a critical role in the suppression of vibration (Choura, 1997). This study found that the vibration suppres-
sion of inflatable structures can be accomplished by varying the internal pressure and thus there is no need
of other external actuators for vibration suppression.

Some researchers tested extremely lightweight inflatable structures in a vacuum chamber and in the
ambient atmospheric condition (Slade et al., 2001). They found a lack of correlation between the two cases,
and they explained it to be caused by air damping. Because the coupling of a lightweight membrane and air
is a highly non-linear and localized fluid-structure interaction problem, it is difficult to perform accurate
numerical modeling and simulation of such problems. Hence, testing inflatable structures in vacuum con-
ditions becomes necessary in order to verify numerical predictions. Moreover, because of the size limitation
on actual vacuum chambers, tests in vacuum conditions for large membrane structures are only possible by
using scaled models (Pappa et al., 2001). Johnson and Lienard (2001) obtained the natural frequencies and
mode shapes of a one-tenth scale Next Generation Space Telescope (NGST) using a finite-element model
developed using the cable network method. The difference between predicted and measured natural fre-
quencies ranges from 2% to 27%, and it was noted that predicted mode shapes correlated well for strut-
dominated modes, while membrane-dominated modes showed less correlation. The study of pre-stressed
membranes by Hall et al. (2002) showed that the natural frequencies in air are lower than the ones in
vacuum because air acts as a non-structural mass. But, the numerical natural frequencies obtained by
Kukathasan and Pellegrino (2002) were lower than experimental vacuum ones and the error was attributed
to an inaccurate tension force or Young�s modulus. However, they stated that the error reduced as the ten-
sion force was increased. Experiments also showed that it is difficult to excite global vibration modes of a
membrane structure by applying excitations at inflatable components because these components have high
local flexibility, and resonant frequencies may vary with the excitation location (Pappa et al., 2001; Gaspar
et al., 2002). Moreover, because the light weight of membranes, contact sensors cannot be used in testing
and non-contact sensors (e.g., scanning laser vibrometers) need to be used (Gaspar et al., 2002).

In recent years many researchers used commercial finite-element packages to model and analyze non-
linear elastic problems of thin-thickness membrane structures (Wong and Pellegrino, 2003; Kukathasan
and Pellegrino, 2003; Johnston and Parrish, 2003; Jha and Inman, 2003; Holland et al., 2003; Greschik
et al., 2003). Because of thin thickness, how to prevent wrinkling becomes the major task in the design
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of membrane structures (especially those for communication use), and hence membrane wrinkling has been
heavily studied (Wong and Pellegrino, 2003; Kukathasan and Pellegrino, 2003; Jacobson et al., 2004; Su
et al., 2003; Sutjahjo et al., 2004). Other important problems studied include air mass effect (Giraudeau
et al., 2002; Kukathasan and Pellegrino, 2003), deployment methods and dynamics (Tsunoda et al.,
2003), stiffening by internal pressure, follower-force effect by internal pressure (Jha and Inman, 2003), wrin-
kle-free design (Sakamoto et al., 2003), crease of membranes, curling of membrane edges caused by residue
stresses, gravity-induced sag and pre-stressing (Jacobson et al., 2004), local buckling due to defects, clefting
(Lennon and Pellegrino, 2000), and experimental techniques for accurate non-contact measurements (Slade
et al., 2003; Bales et al., 2003). In wrinkling analysis, the major task is to predict wrinkling regimes, out-of-
plane displacements, wrinkle wavelengths, and dynamic characteristics after wrinkling (Wong and Pelleg-
rino, 2003; Kukathasan and Pellegrino, 2003). Because of thin thickness, such analysis always requires the
use of very small plate or shell elements and hence very long computation time is needed. One can see from
the literature that ABAQUS (2001) is one of the popular finite-element codes used in solving such non-
linear elastic problems (Wong and Pellegrino, 2003; Kukathasan and Pellegrino, 2003; Johnston and Par-
rish, 2003; Jha and Inman, 2003). However, plate and shell elements in commercial codes usually do not
include effects that are special to membranes, such as air mass effect and pressure-induced follower-force
effect. Moreover, dynamic analysis of post-buckled structures requires a fully non-linear static analysis
and then a linear modal analysis, and it usually requires special attentions in using commercial codes be-
cause different remedial techniques are used for improving convergence and accuracy, preventing numerical
singularity, and/or accounting for large geometric non-linearities. Hence, even the post-buckling analysis
results from popular commercial codes do not always match with experimental data (Kukathasan and Pel-
legrino, 2003; Jha and Inman, 2003). Furthermore, although some commercial packages can give somewhat
reasonable results, the black-box feeling in using those remedial techniques of commercial packages is al-
ways a hidden pain of researchers. For university professors it is especially painful because it is costly and
inconvenient to use commercial packages for teaching finite-element courses, especially the second finite ele-
ment course. Hence, researchers have been improving their in-house finite-element codes by adding new
non-linear elements and solution sequences for analyzing membrane structures (Jacobson et al., 2004; Su
et al., 2003; Sutjahjo et al., 2004).

The above review shows that study of membranes is challenging because of the modeling, analysis, and
experimental issues caused by the light weight, high flexibility, thin thickness, and air mass effect. This work
is to avoid some of these issues by developing a non-linear membrane element by implementing a fully non-
linear membrane theory, to use a scanning laser vibrometer and a motion analysis system for dynamic test-
ing, and to investigate the dynamic characteristics of thin-film membranes subjected to internal pressures
and/or external tension loads.
2. Theoretical background

Fig. 1 shows the three coordinate systems needed for the modeling of initially curved membranes. The
xyz is an orthogonal curvilinear coordinate system with the curvilinear axes x and y being on the unde-
formed reference surface of the membrane and the z axis being a rectilinear axis, and the ngf is an orthog-
onal curvilinear coordinate system with the curvilinear axes n and g being on the deformed reference surface
and the f axis being a rectilinear axis. The n̂ and ĝ represent the convected configurations of x and y axes.
Also, an inertial rectangular coordinate system abc is used for reference purpose in the calculation of initial
curvatures. The ik are unit vectors along the n, g, f axes, jk are unit vectors along the x, y, z axes, and ia, ib,
and ic are unit vectors along the a, b, c axes. It can be shown that the variations of extension strains e1 and
e2 and shear strain c6(=c61 + c62) on the reference plane of the membrane are given by (Pai and Young,
2003; Nayfeh and Pai, 2004):



Fig. 1. The three coordinate systems for modeling and the undeformed and deformed geometries of a differential reference surface of a
membrane.
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de1 ¼ bT 11dt11 þ bT 12dt12 þ bT 13dt13 ð1Þ

de2 ¼ bT 21dt21 þ bT 22dt22 þ bT 23dt23 ð2Þ

dc6 ¼
bT 21 � sin c6

bT 11

� �
dt11 þ bT 22 � sin c6bT 12

� �
dt12 þ bT 23 � sin c6bT 13

� �
dt13

cos c6ð1þ e1Þ

þ
bT 11 � sin c6bT 21

� �
dt21 þ bT 12 � sin c6

bT 22

� �
dt22 þ bT 13 � sin c6bT 23

� �
dt23

cos c6ð1þ e2Þ
ð3aÞ

dc61 ¼
ð1þ e2Þ cos c62dc6 � sin c61de1 þ sin c62de2

ð1þ e1Þ cos c61 þ ð1þ e2Þ cos c62
ð3bÞ

dc62 ¼
ð1þ e1Þ cos c61dc6 þ sin c61de1 � sin c62de2

ð1þ e1Þ cos c61 þ ð1þ e2Þ cos c62
ð3cÞ
where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; c62 ¼ tan�1 ð1þ e1Þ sin c6
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Here k0
i are initial curvatures, u, v, w are displacement components of an arbitrary point on the reference

plane, and ux � ou/ox, uy � ou/oy, etc. The variations of deformed curvatures ki are given by
�dk61

dk1

dk5

8><
>:

9>=
>; ¼ o

ox

dh1

dh2

dh3

8><
>:

9>=
>;� ½K1�

dh1

dh2

dh3

8><
>:

9>=
>; ð5aÞ

�dk2

dk62
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8><
>:
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dh2

dh3

8><
>:
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>;� ½K2�

dh1

dh2

dh3

8><
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>; ð5bÞ
where
dh1 ¼
cos c61

cos c6ð1þ e2Þ
ðT 31dt21 þ T 32dt22 þ T 33dt23Þ �

sin c62
cos c6ð1þ e1Þ

ðT 31dt11 þ T 32dt12 þ T 33dt13Þ ð6Þ

dh2 ¼
sin c61

cos c6ð1þ e2Þ
ðT 31dt21 þ T 32dt22 þ T 33dt23Þ �

cos c62

cos c6ð1þ e1Þ
ðT 31dt11 þ T 32dt12 þ T 33dt13Þ ð7Þ

dh3 ¼
1

2
ðdc62 � dc61Þ þ

bT 21 � sin c6bT 11

� �
dt11 þ bT 22 � sin c6bT 12

� �
dt12 þ bT 23 � sin c6

bT 13

� �
dt13

2 cos c6ð1þ e1Þ

�
bT 11 � sin c6

bT 21

� �
dt21 þ bT 12 � sin c6bT 22

� �
dt22 þ bT 13 � sin c6bT 23

� �
dt23

2 cos c6ð1þ e2Þ
ð8Þ

½K1� �
0 k5 �k1

�k5 0 �k61

k1 k61 0

2
64

3
75; ½K2� �

0 k4 �k62

�k4 0 �k2

k62 k2 0

2
64

3
75

T 31 ¼ ðbT 12
bT 23 � bT 13

bT 22Þ=R0; T 32 ¼ ðbT 13
bT 21 � bT 11

bT 23Þ=R0; T 33 ¼ ðbT 11
bT 22 � bT 12

bT 21Þ=R0

R0 � ½ðbT 12
bT 23 � bT 13

bT 22Þ2 þ ðbT 13
bT 21 � bT 11

bT 23Þ2 þ ðbT 11
bT 22 � bT 12

bT 21Þ2�1=2 ¼ j cos c6j

ð9Þ
Using the polar decomposition Jaumann strains Bmn can be shown to be (Pai and Palazotto, 1995)
Bmn ¼
1

2

ou

oxm

 in þ

ou

oxn

 im

� �
ð10Þ
where u is the local displacement vector relative to the deformed coordinate system ngf, and x1 � x, x2 � y,
and x3 � z. The fully non-linear strain–displacement relations can be derived by using the concept of local
relative displacements and Fig. 1 to be (Pai and Palazotto, 1995)
fBg ¼ fwg ð11Þ

where the change of strains through the thin thickness of a membrane is neglected and
fBg � fB11;B22; 2B12gT

fwg � fð1þ e1Þ cos c61 � 1; ð1þ e2Þ cos c62 � 1; ð1þ e1Þ sin c61 þ ð1þ e2Þ sin c62g
T

ð12Þ
For a membrane consisting of orthotropic layers, one can obtain the transformed material stiffness matrix

½QðiÞ� for the ith lamina from its principal material stiffness matrix [Q(i)] and its ply angle (measured with
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respect to the axis x) by using tensor transformations and assuming that Jaumann stress J ðiÞ
33 ¼ 0. The

stress–strain relation for the ith lamina is given by
fJ ðiÞg ¼ Q
ðiÞ

h i
fBg ð13Þ
where
fJ ðiÞg � J ðiÞ
11 ; J

ðiÞ
22 ; J

ðiÞ
12

n oT

; Q
ðiÞ

h i
�

Q
ðiÞ
11 Q

ðiÞ
12 Q

ðiÞ
16

Q
ðiÞ
12 Q

ðiÞ
22 Q

ðiÞ
26

Q
ðiÞ
16 Q

ðiÞ
26 Q

ðiÞ
66

2
664

3
775 ð14Þ
3. Finite-element formulation

To study the dynamic characteristics of a tensioned membrane, we first perform fully non-linear static
analysis of the membrane under static loading and then perform a linear modal analysis to obtain natural
frequencies and mode shapes with respect to the statically deformed configuration. To derive finite-element
equations for fully non-linear static analysis we use the principle of virtual work, which states that (Wash-
izu, 1982)
dP ¼ dW nc ð15Þ
where P is the elastic energy and Wnc is the non-conservative energy due to external loads.

3.1. Elastic energy

Because the elastic energy P is due to relative displacements among material particles, we have
dP ¼
Z
V 0

ðf1 
 inÞd
ou

ox1
dx1 
 in

� �
þ ðf2 
 inÞd

ou

ox2
dx2 
 in

� �
þ ðf3 
 inÞd

ou

ox3
dx3 
 in

� �� �
ð16Þ
where fi is the force vector acting on the deformed surface of the undeformed area dxmdxn (i 5 m 5 n) of
an undeformed infinitesimal cube dx1dx2dx3 (=dV0). Using the polar decomposition, Jaumann stresses can
be proved to be (Pai and Palazotto, 1995)
J 11 ¼
f1 
 i1
dx2dx3

; 2J 12 ¼
f1 
 i2
dx2dx3

þ f2 
 i1
dx1dx3

¼ 2J 21 ¼ J 21 þ J 12 ð17Þ
Using (10), (13) and (17) in (16) one can show that
dP ¼
XN
i¼1

Z
A

Z ziþ1

zi

J ðiÞ
11dB11 þ J ðiÞ

22dB22 þ 2J ðiÞ
12dB12

� �
dAdz ¼

XN
i¼1

Z
A

Z ziþ1

zi

fdBgT Q
ðiÞ

h i
fBgdAdz ð18Þ
where A denotes the undeformed area of the reference surface, N is the total number of layers, and zi and
zi+1 indicate the locations of the bottom and upper surfaces of the ith layer. Substituting (11) into (18)
yields
dP ¼
Z
A
fdwgT½U�fwgdA ð19Þ
where [U] is a symmetric 3 · 3 matrix given by
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½U� ¼
XN
i¼1

Z ziþ1

zi

Q
ðiÞ

h i
dz ð20Þ
It follows from (12) and (1)–(4) that
fdwg ¼ ½W�fdUg ð21Þ
where
fUg ¼ fu; ux; uy ; v; vx; vy ;w;wx;wygT ð22aÞ

Wij ¼
owi

oUj
ð22bÞ
The non-zero elements of [W] are:
W12 ¼ C11=C0; W15 ¼ C12=C0; W18 ¼ C13=C0;

W13 ¼ C14=C0; W18 ¼ C15=C0; W19 ¼ C16=C0;

W11 ¼ ðC12k
0
5 � C13k

0
1 þ C15k

0
4 � C16k

0
62Þ=C0

W14 ¼ �ðC11k
0
5 þ C13k

0
61 þ C14k

0
4 þ C16k

0
2Þ=C0

W17 ¼ ðC11k
0
1 þ C12k

0
61 þ C14k

0
62 þ C15k

0
2Þ=C0

ð23Þ

W22 ¼ C21=C0; W25 ¼ C22=C0; W28 ¼ C23=C0;

W23 ¼ C24=C0; W26 ¼ C25=C0; W29 ¼ C26=C0;

W21 ¼ ðC22k
0
5 � C23k

0
1 þ C25k

0
4 � C26k

0
62Þ=C0

W24 ¼ �ðC21k
0
5 þ C23k

0
61 þ C24k

0
4 þ C26k

0
2Þ=C0

W27 ¼ ðC21k
0
1 þ C22k

0
61 þ C24k

0
62 þ C25k

0
2Þ=C0

ð24Þ

W32 ¼ 2C31=C0; W35 ¼ 2C32=C0; W38 ¼ 2C33=C0;

W33 ¼ 2C34=C0; W36 ¼ 2C35=C0; W39 ¼ 2C36=C0;

W31 ¼ 2ðC32k
0
5 � C33k

0
1 þ C35k

0
4 � C36k

0
62Þ=C0

W34 ¼ �2ðC31k
0
5 þ C33k

0
61 þ C34k

0
4 þ C36k

0
2Þ=C0

W37 ¼ 2ðC31k
0
1 þ C32k

0
61 þ C34k

0
62 þ C35k

0
2Þ=C0

ð25Þ
where
C0 � ð1þ e1Þ cos c61 þ ð1þ e2Þ cos c62

C01 �
bT 21 � sin c6bT 11

cos c6
; C02 �

bT 22 � sin c6bT 12

cos c6
; C03 �

bT 23 � sin c6bT 13

cos c6

C04 �
bT 11 � sin c6bT 21

cos c6
; C05 �

bT 12 � sin c6bT 22

cos c6
; C06 �

bT 13 � sin c6bT 23

cos c6

ð26Þ
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C11 � ð1þ e1 þ ð1þ e2Þ cos c62 cos c61ÞbT 11 � ð1þ e2Þ sin c61 cos c62C01

C12 � ð1þ e1 þ ð1þ e2Þ cos c62 cos c61ÞbT 12 � ð1þ e2Þ sin c61 cos c62C02

C13 � ð1þ e1 þ ð1þ e2Þ cos c62 cos c61ÞbT 13 � ð1þ e2Þ sin c61 cos c62C03

C14 � �ð1þ e1Þ sin c61 sin c62bT 21 � ð1þ e1Þ sin c61 cos c62C04

C15 � �ð1þ e1Þ sin c61 sin c62bT 22 � ð1þ e1Þ sin c61 cos c62C05

C16 � �ð1þ e1Þ sin c61 sin c62bT 23 � ð1þ e1Þ sin c61 cos c62C06

ð27Þ

C21 � �ð1þ e2Þ sin c61 sin c62bT 11 � ð1þ e2Þ sin c62 cos c61C01

C22 � �ð1þ e2Þ sin c61 sin c62bT 12 � ð1þ e2Þ sin c62 cos c61C02

C23 � �ð1þ e2Þ sin c61 sin c62bT 13 � ð1þ e2Þ sin c62 cos c61C03

C24 � ð1þ e2 þ ð1þ e1Þ cos c62 cos c61ÞbT 21 � ð1þ e1Þ sin c62 cos c61C04

C25 � ð1þ e2 þ ð1þ e1Þ cos c62 cos c61ÞbT 22 � ð1þ e1Þ sin c62 cos c61C05

C26 � ð1þ e2 þ ð1þ e1Þ cos c62 cos c61ÞbT 23 � ð1þ e1Þ sin c62 cos c61C06

ð28Þ

C31 � ð1þ e2Þ sin c61 cos c62
bT 11 þ ð1þ e2Þ cos c61 cos c62C01

C32 � ð1þ e2Þ sin c61 cos c62
bT 12 þ ð1þ e2Þ cos c61 cos c62C02

C33 � ð1þ e2Þ sin c61 cos c62
bT 13 þ ð1þ e2Þ cos c61 cos c62C03

C34 � ð1þ e1Þ cos c61 sin c62bT 21 þ ð1þ e1Þ cos c61 cos c62C04

C35 � ð1þ e1Þ cos c61 sin c62bT 22 þ ð1þ e1Þ cos c61 cos c62C05

C36 � ð1þ e1Þ cos c61 sin c62bT 23 þ ð1þ e1Þ cos c61 cos c62C06

ð29Þ
The way the components of {U} are approximated defines a specific finite element. Using the finite-element
discretization scheme, one can discretize the displacements as
fu; v;wgT ¼ ½N �fq½j�g ð30Þ

where {q[j]} is the displacement vector of the jth element and [N] is a matrix of two-dimensional shape func-
tions. For example, if it is an eight-node serendipity membrane element, we have
fq½j�g ¼ ffqðkÞgT
; fqðkþ1ÞgT

; . . . ; fqðkþ7ÞgTgT ð31Þ

where {q(k)} is the displacement vector of the kth node and is given by
fqðkÞg ¼ fuðkÞ; vðkÞ;wðkÞgT ð32Þ

Substituting (30) into (22a) yields
fUg ¼ ½D�fq½j�g; ½D� � ½o�½N � ð33Þ

where [o] is a 9 · 3 matrix consisting of differential operators and [D] is a 9 · 24 matrix. Substituting (21)
and (33) into (19) yields
dP ¼
XN e

j¼1

Z
A½j�
fdq½j�gT½D�T½W�T½U�½w�dA ¼

XN e

j¼1

fdq½j�gT½K ½j��fq½j�g ¼ fdqgT½K�fq� ð34Þ
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where
½K ½j��fq½j�g �
Z
A½j�
½D�T½W�T½U�fwgdA ð35Þ
Ne is the total number of elements, A[j] is the area of the jth element, [K[j]] is the stiffness matrix of the jth
element, [K] is the structural stiffness matrix, and {q} is the structural displacement vector. We note that
[K[j]] and [K] are not explicitly written.

Because the structural stiffness matrix is a non-linear function of displacements, the governing equations
need to be solved by an incremental/iterative method. To derive incremental equations, we let
q½j�
�  

¼ fq0g þ Dq½j�
�  

; fUg ¼ fU 0g þ fDUg ð36Þ
where {q0} denotes the equilibrium solution and {Dq[j]} the incremental displacement vector.
BecausefJg ¼ ½Q�fwg and initial strains (or stresses) will be considered in the formulation, we will replace
{w} with
fwg ! fw0g þ fwg ð37Þ
where {w0} represent known initial strains in the initial configuration described by the xyz coordinate sys-
tem, and {w} represent unknown additional strains caused by additional loads. Hence, we obtain the first-
order expansions of {w} and [W] as
fwg ¼ fw0g þ fw0g þ ½W0�fDUg ð38Þ

and
½W� ¼ ½W0� þ ½N� ð39Þ

where the entry Nij of [N] is given by
Nij ¼
o2wi

oUjoUk
DUk ð40Þ
Then, we use (38) and (39) to expand (35) into a Taylor series and neglect higher-order terms to obtain
½K ½j��fq½j�g ¼
Z
A½j�
½½D�T½W0�T½U�ðfw0g þ fw0gÞ þ ½D�T½W0�T½U�½W0�fDUg þ ½D�T½N�T½U�ðfw0g þ fw0gÞ�dA

ð41Þ

Using (40) and direct expansion, one can prove that
½N�T½U�ðfw0g þ fw0gÞ ¼ fNmiUmnðw0n þ w0
nÞg

¼ oWmi

oUj
DUjUmn w0n þ w0

n

� �! "

¼ o2w0
m

oUioUj
Umn w0n þ w0

n

� �
DUj

! "
¼ ½X�fDUg ð42Þ
where [X] is a symmetric matrix and its entry Xij is given by
Xij ¼
o2w0

m

oUioUj
Umnðw0n þ w0

nÞ ¼
o2w0

m

oUjoUi
Umnðw0n þ w0

nÞ ¼ Xji ð43Þ
Hence, substituting (42) and (33) into (41) yields
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½K ½j��fq½j�g ¼ K
^½j�
� �

fDq½j�g þ ½K ½j��fq½j�g
####
fq½j�g¼fq0g

ð44Þ� �

where K

^½j�
is the so-called elemental tangent stiffness matrix and is given by
K
^½j�
� �

¼
Z
A½j�
½D�T ½W0�T½U�½W0� þ ½X�

� �
½D�dA ð45Þ
and
½K ½j��fq½j�g
##
fq½j�g¼fq0g ¼

Z
A½j�
½D�T½W0�T½U� fw0g þ fw0g

� �
dA ð46Þ
We note that K
^½j�
� �

is symmetric. Eq. (41) shows that initial strains and additional equilibrium strains play

the same role in the formulation. In other words, any converged equilibrium state can be treated as a new
undeformed configuration with initial strains {w0} + {w0}, which is similar to the updated Lagrangian ap-
proach but no coordinate transformation is needed before updating {w0} because Juamann strains are de-
fined with respect to the deformed coordinate system, as shown in (10).

3.2. External loads

The variation of non-conservative energy due to external loads is given by
dW nc ¼
Z

A
ðr1duþ r2dvþ r3dwÞdA ¼

Z
A
f du dv dw gf r1 r2 r3 gTdA

¼
XN e

j¼1

fdq½j�gTfR½j�g ¼ fdqgTfRg
ð47Þ
where r1,r2, and r3 are distributed external loads per unit area along the axes x, y and z, (30) has been used,
{R[j]} is the elemental nodal loading vector, {R} is the structural nodal loading vector, and
fR½j�g �
Z
A½j�
½N �Tf r1 r2 r3 gTdA ð48Þ
3.3. Incremental-iterative solution method

With the use of a loading parameter k, the governing equation of a static problem can be obtained from
(34), (47) and (15) as
½K�fqg ¼ kfRrg ð49Þ

where {Rr}(={R}/k) is a reference load vector. Let
fqg � fqgi ¼ fq0g þ fDqgi ¼ fqgi�1 þ fdqgi ð50aÞ

k � ki ¼ k0 þ Dki ¼ ki�1 þ dki ð50bÞ

where i P 2, i is the number of iterations in searching for a converged solution when the load increases from
k = k0 to k = k0 + Dki, {q

0} denotes the equilibrium solution corresponding to k = k0, {q}i denotes the iter-
ated solution corresponding to k = ki, and {Dq}i denotes the incremental displacement vector correspond-
ing to the increment Dki = ki � k0 of the loading parameter. Substituting (50a,b) into (49), expanding the
results into a Taylor series, and neglecting higher-order terms, we obtain
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½bK �i�1fdqgi ¼ dkifRrgi�1 þ fggi�1 ð51Þ

where
fggi�1 � ki�1fRrgi�1 � ð½K�fqgÞi�1; fRrg ¼ fRrgi�1 þ ½K�i�1fdqgi
½bK �i�1 � ½K

^

�i�1 � ki�1½K�i�1

ð52Þ
Here ½K� is a non-trivial matrix only if parametric loadings exist, ½bK �i�1 is the local tangent stiffness matrix,
and the sub-indices indicate the state, e.g., ½bK �i�1 � ½bK �fqg¼fqgi�1;k¼ki�1

. To solve for {dq}i and dki we use an
alternative version of Riks� method (Riks, 1979; Lee, 1992) to solve (51) and the following constraint
equation
fDqgT
i�1fdqgi þ Dki�1dkifRrgT

i�1fRrgi�1 ¼ 0 ð53Þ

which limits the arc-length increment by confining the current search direction to be perpendicular to the
previous accumulated searching direction (Riks, 1979).

3.4. Modal analysis

After the statically deformed geometry of a membrane is obtained using the iteration method shown
above, the tangent stiffness matrix ½K

^

� (see (45)) of the final deformed state is the stiffness matrix for the
modal analysis. The mass matrix [M] needed for modal analysis is derived through the variation of kinetic
energy dT by using (30) as
dT ¼ �
Z
A

Z
z

qð€uduþ €vdvþ €wdwÞdAdz ¼ �
XN e

j¼1

Z
A½j�
fdq½j�gT½N �Tm½N �f€q½j�gdA

¼ �
XN e

j¼1

fdq½j�gT½M ½j��f€q½j�g ¼ �fdqgT½M �f€qg ð54Þ
where q is the mass density, [M[j]] is the elemental mass matrix, [M] is the structural mass matrix, and
m �
Z
z

qdz; ½M ½j�� �
Z
A½j�
½N �Tm½N �dA ð55Þ
The elemental tangent mass matrix is the same as [M[j]] because it is a constant matrix.
4. Numerical results

4.1. Inflated circular cylindrical tube

We consider a membrane tube having a diameter D = 3in. and a length L = 47.5 in. with two ends fixed.
The tube was made by overlapping (by 0.5 in.) and gluing two opposite edges of a rectangular Kapton film
using a 0.001 in thick double-sided Kapton tape with silicone adhesive. According to the manufacturer the
Kapton film has Young�s modulus E = 3.7 · 105psi, mass densityq = 2.7552 slugs/ft3, thickness
h = 0.002 in., and Poisson�s ratio m = 0.34. The seam is assumed to have a width w = 0.5 in. and thickness
h = 0.005 in. In numerical analyses we focus on the effects of the longitudinal joining seam and different
pressures on mode shapes and natural frequencies of a pressurized tube.

Fig. 2 shows the tube modeled using rectangular membrane elements with the same thickness, where
elements are shrunk by 20% in order to show the connectivity of elements. Fig. 3 shows a single point



Fig. 2. The inflated circular cylindrical tube modeled using rectangular membrane elements.
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Fig. 3. A single point FRF of the inflated tube without a joining seam when p = 1.75psi, where the excitation is at DOF 825 and the
response at DOF 819 in Fig. 2.
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Frequency Response Function (FRF) with an excitation at DOF 825 (see Fig. 2, a nodal transverse dis-
placement w) and the response at DOF 819 when the tube is inflated with p = 1.75psi. The FRF is obtained
using the first 100 modes with modal damping ratios assumed to be 0.02 for each mode. We note that clear
peaks only show at modes #1 (#2) and #3 (#4) and there are no clear peaks in high-frequency ranges be-
cause of modal coupling. Fig. 4 shows the first 12 mode shapes and corresponding natural frequencies of
the tube inflated with p = 1.75psi. Because the thickness of the tube is uniform, mode shapes appear in
pairs because of the symmetric geometry. Hence, modes #1, #3, #5, #7, #9, and #11 are the same as modes
#2, #4, #6, #8, #10, and #12, respectively. We notice that only modes #1, #3, and #9 are global bending
modes and most of other modes are local shell modes. Table 1 shows that reducing the internal pressure
from p = 1.75psi to p = 0.8125psi reduces the natural frequencies, and it also changes the appearance
sequence of mode shapes after the eighth mode. For example, the 11th mode becomes the new 9th mode,
the new 11th mode is a global torsional mode that does not appear in pair, and the third bending mode
becomes the new 15th (and 14th) mode. Table 1 also shows that, when p decreases, the natural frequencies
of global bending modes only reduce a little, but the ones of shell modes (e.g., modes #5 and #7) reduce
dramatically.

Fig. 5 show the tube modeled using a thickness of h = 0.005 in. for elements on the seam and
h = 0.002 in. for other elements. The FRFs shown in Fig. 6 show again that there are no clear peaks except
the two peaks in the low-frequency range caused by the bending modes. Because shell modes dominate
high-frequency responses and their frequencies are close to each other, modal coupling is expected and it



Fig. 4. The first 12 mode shapes and natural frequencies of the inflated tube without a joining seam and having an inflation pressure
p = 1.75psi.
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will be difficult in obtaining mode shapes in experiments. Fig. 7 shows four low-frequency mode shapes and
natural frequencies when p = 1.75psi. Because of the joining seam, the geometric symmetry is broken and
natural frequencies x1 and x3 are different from x2 and x4, respectively. However, the first four modes are
still global bending modes, and shell modes still dominate high-frequency responses. We note that x2 > x1

because mode #2 involves the bending of the joining seam, the x2 is higher than the x2 in Fig. 4, and the x1

is lower than the x1 in Fig. 4. Modes #2 and #4 do not cause peaks in Fig. 6 because they are bending on
the xy plane (see Fig. 5).



Table 1
Comparison of natural frequencies when the inflation pressure is reduced from p = 1.75psi to p = 0.8125psi and without the joining
seam

x1 (Hz) x3 (Hz) x5 (Hz) x7 (Hz) x9 (Hz)

p = 1.75psi 97.7 245.8 420.1 429.6 439.6
p = 0.8125psi 96.7 244.4 287.5 300.6 438.1 (x15)

Fig. 5. The inflated circular cylindrical tube with a longitudinal joining seam.
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Fig. 6. The single point FRF of DOF 1425 with an excitation at DOF 1419 of the inflated tube with a joining seam when p = 1.75psi.

3014 L.G. Young et al. / International Journal of Solids and Structures 42 (2005) 3001–3025
4.2. Tensioned rectangular membrane

The 22 in. · 23.25 in. · 0.002 in. Kapton membrane shown in Fig. 8 has the same material properties as
the inflated tube presented in Section 4.1, and the tension forces are aligned along the two diagonal lines.
The tension force at each corner is applied through a 1 in. · 1 in. thin aluminum plate glued to the Kapton
film. In the non-linear static analysis, the center point is fixed. In the linear modal analysis, the four corners
are fixed by the four aluminum plates. Fig. 9 shows some low-frequency mode shapes and natural frequen-
cies when T = 1.5 lbs. We note that most modes are local vibration modes around the edges except a few



Fig. 7. Four low-frequency mode shapes and natural frequencies of the inflated tube with a joining seam and p = 1.75psi.
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Fig. 8. The rectangular Kapton membrane with four corners loaded.
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Fig. 9. Some low-frequency mode shapes and natural frequencies of the tensioned rectangular membrane with T = 1.5 lbs.

3016 L.G. Young et al. / International Journal of Solids and Structures 42 (2005) 3001–3025
global modes. These local modes are due to the non-uniform tension field over the entire membrane with
the four edges being under small tension forces. For example, modes #2 and #3 are apparently local modes
and modes #1, #6, and #9 are more like global modes. We note that modes #2, #3, #6, and #10 are dom-
inated by vibrations of the two edges parallel to the x axis, and modes #4, #5, #7, and #11 are the corre-
sponding local modes dominated by vibrations of the two edges parallel to the y axis. Because the
membrane shape is non-square, the tension force along the two edges parallel to the y axis is higher than
that along the two edges parallel to the x axis and hence the natural frequencies of modes #4, #5, #7, and
#11 are slightly higher than those of modes #2, #3, #6, and #10, respectively. Table 2 compares the natural
frequencies when T = 2lbs with those when T = 1.5 lbs. We note that increasing the tension force by 0.5 lb
does not change the appearance sequence of the first few mode shapes, but the natural frequencies increase.
Fig. 10a and b show FRFs of a response point at the center (DOF 1263, see Fig. 8) and a point close to the
center of an edge (DOF 525), respectively. The FRFs are obtained using the first 70 modes with modal
damping ratios assumed to be 0.02 for each mode. Fig. 9 shows that the dynamics around the edge is dom-
inated by local modes and the dynamics around the membrane center is dominated by global modes, and
Fig. 10a,b exactly show this phenomenon. Similar to those observed in the FRFs of the Kapton tube, the
local modes have natural frequencies close to each other and hence modal coupling exists in all high-fre-
quency ranges.
Table 2
Comparison of natural frequencies of the rectangular membrane when the tension force is changed from T = 1.5 lb to T = 2lb

x1 (Hz) x2 (Hz) x3 (Hz) x4 (Hz) x5 (Hz)

T = 1.5 lb 13.4 17.7 17.7 18.5 18.6
T = 2lb 15.5 20.5 20.5 21.4 21.5
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DOF 525.
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5. Experimental results and comparison

5.1. Inflated circular cylindrical tube

Fig. 11 shows the circular cylindrical Kapton tube set-up with 100 circular retro-reflective markers on it
and a Ling Dynamic LDS V408 shaker attached to the plastic part that sealed and supported the left end of
the tube. Because the membrane is transparent, the retro-reflective markers were used to make the meas-
urement using a Polytec PI PSV-200 scanning laser vibrometer possible and to enhance the laser signal.
However, the markers are small (�0.06 in.2) and mass loading from the markers is negligible. The retro-
reflective markers look big in Fig. 11 because they reflected the flashlight from the camera. The seam is
on the opposite side of the 100 measurement markers. Experiments were performed for inflation pressures
p = 0.8125psi and p = 1.75psi. For the FFT acquisition in using the scanning laser vibrometer, a 0–1kHz
periodic chirp excitation was used with 6400 FFT lines. Fig. 12a shows the averaged FRF of the tube with
Fig. 11. The inflated circular cylindrical Kapton tube with retro-reflective circular markers.



Fig. 12. The FRFs of the inflated tube with an inflation pressure p = 1.75psi: (a) averaged FRF, (b) FRF measured at center, and (c)
FRF measured near the excitation location.
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an inflation pressure p = 1.75psi. Fig. 12b and c shows FRFs measured at the center (see Fig. 11, #2) and
near the excitation (#1), respectively. We notice that the FRFs have many small peaks but the dominants
peaks are in the low-frequency range, as expected. Moreover, because the membrane is so flexible, it was
difficult to excite high-frequency modes and hence the peaks in high-frequency ranges have small ampli-
tudes. The first six Operational Deflection Shapes (ODSs) corresponding to the peaks in Fig. 12 are shown
in Fig. 13. The ODSs #1 and #2 in Fig. 13 correspond to and agree well with modes #2 and #4 in Fig. 7.
However, the experimental frequencies are lower than the numerical ones by 11.5Hz (11.6%) and 20.6Hz
(8.3%), respectively. The discrepancy could be the effect of air mass or due to incorrect material properties
used in the numerical computation. Since Young�s modulus of Kapton films is known to be a function of
strains, temperature, and time, the value of E used in the finite-element analysis may not be accurate. Air
mass may significantly change the dynamic characteristics of membrane structures and needs to be ac-
counted for in the numerical analysis in order to have results comparable to experimental ones (Kukatha-
san and Pellegrino, 2002).

We note that ODS #4 corresponds to a traveling wave and thus is a coupled mode. The ODS corre-
sponding to the peak at 60Hz was found to be a non-uniform traveling shape, and hence it is not an
ODS at all. It was believed to be due to the electric power used to drive the electro-mechanical shaker.
The ODSs in Fig. 13 look like pure bending modes. However, because the measurement was along a line,
it is difficult to know if a measured ODS is a bending mode or a shell mode.



Fig. 13. The first six ODSs and natural frequencies of the inflated Kapton tube with a pressure p = 1.75psi.
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When the internal pressure is reduced from p = 1.75psi to p = 0.8125psi, the frequency of ODS #2 de-
creased from 226.6Hz (see Fig. 13) to 211.4Hz.

5.2. Tensioned rectangular membrane

Fig. 14 shows the test set-up of the 22 in. · 23.25 in. · 0.002 in. rectangular membrane. Experiments were
performed with an excitation at a single corner and with a simultaneous excitation at the four corners,
respectively. The number of measurement points is 13 · 16, as shown in Fig. 14. The small circular ret-
ro-reflective markers have a radius of 0.14 in., but they look big in the picture because they reflected the
camera flashlight. Because of the local flexibility of membranes, the excitation points were positioned at
where the tension cables were connected to the membrane at the four corners. Fig. 15 shows the averaged
FRF and a single-point FRF of the rectangular membrane with T = 1.5 lbf and an excitation at the lower
left corner. The peak at 60Hz in Fig. 15a was caused by the 60-Hz electrical power used to drive the shaker.
The many small peaks in Fig. 15b around high-frequency ranges are due to local modes around the edges,
as explained and shown in Figs. 9 and 10. Fig. 16 shows the first four ODSs and frequencies under the single
point excitation. Fig. 17 shows the first four ODSs and frequencies obtained with T = 1.5 lbf and a simul-
taneous excitation at the four corners. In order to simultaneously excite the four corners, the four corners
were supported by a frame and a Z-shape rod was used to connect the frame to the shaker (see Fig. 14). The
obtained FRFs are rougher than those in Fig. 15, which is probably due to the vibration of the rod.

Figs. 16 and 17 show that the excitation location may affect the natural frequencies and mode shapes.
ODSs #1 and #4 in Fig. 16 correspond to ODSs #1 and #3 in Fig. 17, and ODS #3 in Fig. 16 is similar
to ODS #2 in Fig. 17. The ODSs #1, #2, and #3 in Fig. 17 correspond to and agree with the modes #1, #6,
and #9 in Fig. 9. However, the experimental frequencies are much lower than the numerical ones. Since the
rectangular membrane has a large area in contact with the ambient air, air mass significantly lowers the
experimental natural frequencies. Moreover, Fig. 15 shows that there are no clear peaks beyond 20Hz.



Fig. 14. The rectangular Kapton membrane excited at the four corners by a frame with a tension force T = 1.5 lbs at each corner.

Fig. 15. FRFs of the rectangular membrane with T = 1.5 lbs when the excitation is at the lower left corner: (a) averaged FRF, and
(b) single point FRF measured at the center of the bottom edge.
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In other words, high-frequency modes are highly coupled, and most experimental ODSs were observed to
be traveling modes due to modal couplings. Hence, it is difficult to obtain experimental high-frequency



Fig. 16. The first four ODSs and natural frequencies of the rectangular membrane with T = 1.5 lbs and an excitation at the lower left
corner.

Fig. 17. The first four ODSs and frequencies of the rectangular membrane with T = 1.5 lbs and a simultaneous excitation at four
corners.
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ODSs to be compared with the corresponding numerical mode shapes. The results show that only low-or-
der natural frequencies and ODSs were able to be obtained experimentally because of high structural flex-
ibility, high modal density, severe modal coupling, and heavy air mass. Moreover, experimental natural
frequencies are all lower than numerical ones. This discrepancy is attributed to the influence of heavy
air mass.

A simple way to account for the air mass effect in the vibration of the rectangular membrane is to in-
crease the membrane�s mass density. If the density of the Kapton membrane is increase by a factor of
2.6 to account for air mass when T = 1.5 lbf, the numerical natural frequencies of modes #1, #6, and #9
decrease from 13.4, 20.0, and 22.6Hz (see Fig. 9) to 8.3, 12.4, and 14.0Hz, respectively. We note that,
although the 6th and 9th numerical natural frequencies become close to the experimental ones in Fig. 17
(ODSs #2 and #3), the first natural frequency does not match because the air mass effect is not exactly
the same as adding mass to the structure. Hence, advanced analysis by considering the air-membrane inter-
action needs to be performed in order to accurately predict natural frequencies of membranes in air
(Kukathasan and Pellegrino, 2003).

Because the membrane thickness is usually so thin, any significant amplitude of harmonic excitation may
cause the vibration amplitude to be larger than the thickness, and non-linear modal coupling, modulation
of several linear modes at an unknown frequency, and/or even chaotic vibration may exist (Nayfeh and Pai,
2004). In vibration testing using a scanning laser vibrometer, if the structural vibration is steady and peri-
odic with a known period T and the recording at each location is controlled by triggering to begin at nT (n
is an integer) after the beginning recording time of the previous measurement point, the actual velocity pro-
file at time t = tk will be the distribution of the measured velocities of all points at nT + tk, where n is dif-
ferent for each point. The ODS corresponding to the velocity profile can be calculated as the velocity profile
divided by X(=2p/T) only if the vibration is harmonic. Hence a scanning laser vibrometer cannot measure a
transient ODS or even a steady-state ODS having an unknown period. Fortunately a camera-based motion
analysis system can solve these problems because it simultaneously traces all markers and provides truly
Lagrangian descriptions of particle motions.

To check whether the ODSs shown in Figs. 16 and 17 are real ODSs we also used our new EAGLE-500
real-time motion analysis system shown in Fig. 18 to measure the ODSs of the membrane with T = 1.5 lbf.
In order to have non-localized and non-contact excitations we used a lightweight 18 in. · 18.25 in. · 0.09 in.
composite plate set-up to be parallel to the membrane and at 2.5 in. away from the membrane�s center to
push the surrounding air to excite the membrane. The composite plate was fixed on a Ling Dynamic LDS
V408 shaker, and the excitation amplitude was controlled to be 3.5mm, 4.5mm, and 5.0mm for ODSs #1,
#2, and #3, respectively. Experiments showed that this is a very efficient way of exciting the membrane be-
cause the air mass effect is so significant. The motion analysis system uses 8 high-resolution CMOS (com-
plementary metal-oxide-semiconductor) cameras to capture pictures of a structure when 8 visible red LED
strobes light up retro-reflective markers on the structure. The cameras and strobes are synchronized to
work at a speed between 0.1 and 2000 FPS (frames per second). For a frame rate between 0.1 and 480
FPS, a full resolution of 1280 · 1024 pixels is used. For a frame rate between 480 and 2000 FPS, a reduced
resolution is used. Using triangulation techniques and the known focal lengths (after calibrations using an
L-frame with 4 markers and a T-wand with 3 markers) of the cameras and the known coordinates of the
bright points (caused by the retro-reflective markers) on the 2D pictures inside the cameras, the EAGLE
real-time software EVaRT 4.2 automatically computes and records the instant 3D coordinates of the center
of each retro-reflective marker that is seen by at least two cameras. Hence, 3D time traces of all makers are
available for performing dynamic animation using stick figures and showing pop-up graphs of displace-
ments, velocities, and accelerations, and they can be output to other programs for further signal processing.
The recording time length is effectively infinite and up to 600 markers can be simultaneously traced due to
the use of large computer memory and a 100Mbit data upload rate. Because the 3D coordinates of each
marker are checked and calibrated when more than two cameras see the marker, the measurement accuracy



Fig. 18. A typical set-up of an EAGLE-500 motion analysis system for measuring instant coordinates of many markers on a structure.

Fig. 19. The first three ODSs and frequencies of the rectangular membrane with T = 1.5 lbs and excited by the surrounding air pushed
by a lightweight composite plate.
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is high. For example, the measurement error is far less than 1.0 mm when the measurement volume is
2 · 2 · 2m3. We note that, although the measurement accuracy of the motion analysis system is lower than
that of the scanning laser vibrometer, the ODSs measured by the motion analysis system are real ODSs
because all points are measured at the same time. Fig. 19 shows the first three ODSs measured by the
motion analysis system, which agree well with those in Fig. 17. However, in order to efficiently excite
the anti-symmetric ODS #2 shown in Fig. 19, the excitation plate was moved to excite only the left half
of the membrane, but the turbulent air flow around the left edge disturbed the ODS shape. Moreover,
the ODS #4 in Fig. 17 could not be obtained, which is probably due to the way of excitation or it is a
non-linear mode with internal resonance. This problem requires further studies.
6. Concluding remarks

In this paper, we used Jaumann strains and stresses to derive a total-Lagrangian finite-element model of
membranes. Results from finite-element analyses of an inflated circular cylindrical Kapton tube and a ten-
sioned rectangular Kapton membrane were verified by experiments using a scanning laser vibrometer and a
motion analysis system. Finite-element analyses of the inflated tube showed that shell modes dominate the
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dynamics of the tube, and they are difficult to measure using the scanning laser vibrometer. Finite-element
results and experimental data showed that the dynamics of the rectangular membrane is complex. Although
some low-frequency mode shapes correlate well with the experimental ones, numerical natural frequencies
are far higher than the corresponding experimental ones because of heavy air mass that was not included in
the numerical analysis. Moreover, it is almost impossible to verify high-frequency mode shapes because of
high modal density, severe modal coupling, and heavy air mass.
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